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Abstract
In this work is considered a diffusion problem, referred to as the Ventcel problem, in-

volving a second order term on the domain boundary (the Laplace-Beltrami operator).
A variational formulation of the Ventcel problem is studied, leading to a finite element
discretization. The focus is on the construction of high order curved meshes for the dis-
cretization of the physical domain and on the definition of the lift operator, which is aimed
to transform a function defined on the mesh domain into a function defined on the physical
one. This lift is defined in a way as to satisfy adapted properties on the boundary, relatively
to the trace operator. Error estimations are computed and expressed both in terms of finite
element approximation error and of geometrical error, respectively associated to the finite
element degree k ≥ 1 and to the mesh order r ≥ 1. The numerical experiments we led allow
us to validate the results obtained and proved on the a priori error estimates depending on
the two parameters k and r.

1 Introduction
Motivations The origins of the finite element method (see [1]) can be traced back to the 1950s
when engineers started to solve numerically structural mechanics problems in aeronautics. A
key point in the analysis of this method is to obtain an estimation of the error produced while
approximating the solution u of a problem, typically a PDE, by its finite element approxima-
tion uh. Let us mention that there are two types of error estimation either an a priori or an
a posteriori estimation. The goal of an a priori error estimation is to assess the error ∥u− uh∥
in terms of the mesh size h, the problem data, and the exact solution u. Conversely, an a
posteriori estimation depends on h and the computed solution uh, but not on u. Altogether,
the a priori error analysis is mainly oriented for theoretical qualification, while the a posteriori
error analysis serves practical purposes. Together these approaches provide a broad view on the
reliability of the approximation method considered. In this work, we focus on a priori error
estimations.

In various situations, we have to numerically solve a problem, typically a PDE, on lex geom-
etry. This work is aimed at certain industrial applications where the object or material under
consideration is surrounded by a thin layer with different properties (typically a surface treat-
ment or a corrosion layer). The presence of this layer causes some difficulties while discretizing
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the domain and numerically solving the problem. To overcome this problem, a classical approach
consists in approximating the domain by a similar one without a thin layer but equipped with
artificial boundary conditions, like the so-called Ventcel boundary conditions [6]. The physical
properties of the thin layer are then contained in these new boundary conditions.

These last two topics are going to be the main focus of this paper: we are going to consider
the numerical resolution of a (scalar) PDE equipped with higher order boundary conditions,
which are the Ventcel boundary conditions, to after that assess the a priori error produced by
a finite element approximation, on higher order meshes.

The Ventcel problem and its approximation Let Ω be a nonempty bounded connected
domain in Rd, d = 2, 3, with a smooth boundary Γ := ∂Ω. Considering a source term f and
a boundary condition g, as well as some given constants κ ≥ 0, α, β > 0, the Ventcel problem
that we will focus on is the following:{

−∆u+ κu = f in Ω,
−β∆Γu+ ∂nu+ αu = g on Γ,

(1)

where n denotes the external unit normal to Γ, ∂nu the normal derivative of u along Γ and ∆Γ

the Laplace-Beltrami operator.

Notice that the domain Ω is required to be smooth due to the presence of second order
boundary conditions. Thus, the physical domain Ω can not be fitted by a polygonal mesh
domain. We then resort to high order meshes of geometrical order r ≥ 2 defined in Section 3,
following the work of many authors (see, e.g., [18, 17, 9, 10]). Notice that the domain of the
mesh of order r, denoted Ω

(r)
h , does not fits the domain Ω, but the numerical results are more

accurate as will be exposed in Section 7.

A Pk-Lagrangian finite element method is used with a degree k ≥ 1 to approximate the
exact solution u of System (1) by a finite element function uh defined on the mesh domain Ω

(r)
h .

Note that by distinguishing between the parameters r and k, we want to highlight the influence
of the geometrical order r of the mesh and of the finite element approximation degree k on
the computational error: this allows the degree of the finite element method k to be chosen
according to the choice of the geometrical order r. Notice that an isoparametric approach, that
is taking k = r, to this problem is treated in [18, 17].

Since Ω
(r)
h ̸= Ω, in order to compare the numerical solution uh defined on Ω

(r)
h to the

exact solution u defined on Ω and to obtain a priori error estimations, the notion of lifting a
function from a domain onto another domain needs to be introduced. The lift functional was
firstly introduced in the 1970s by many authors (see, e.g., [14, 27, 24, 25]). Among them, let
us emphasize the lift based on the orthogonal projection onto the boundary Γ, introduced by
Dubois in [14] and further improved in terms of regularity by Elliott et al. in [18]. However,
the lift defined in [18] does not fit the orthogonal projection on the computational domain’s
boundary. As will be seen in Section 4.1, this condition is essential to guaranty the theoretical
analysis of this problem. In order to address this issue, an alternative definition is introduced
in this paper which will be used to perform a numerical study of the computational error of
System (1). This modification in the lift definition has a big impact on the error approximation
as is observed in the numerical examples in Section 7.

The main result is the following a priori error estimations, which will be explained in details
and proved in Section 6:

∥u− uℓ
h∥L2(Ω,Γ) = O(hk+1 + hr+1) and ∥u− uℓ

h∥H1(Ω,Γ) = O(hk + hr+1/2),
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where h is the mesh size and uℓ
h denotes the lift of uh (given in Definition 5), and L2(Ω,Γ)

and H1(Ω,Γ) are Hilbert spaces defined below.

Paper organization Section 2 contains all the mathematical tools and useful definitions to
derive the weak formulation of System (1). Section 3 is devoted to the definition of the high order
meshes. In Section 4, are defined the volume and surface lifts, which are the keystones of this
work. A Lagrangian finite element space and discrete formulation of System (1) are presented
in Section 5, alongside their lifted forms onto Ω. The a priori error analysis is detailed in
Section 6. The paper wraps up in Section 7 with some numerical experiments studying the
method convergence rate dependency on the geometrical order r and on the finite element
degree k.

2 Notations and needed mathematical tools
Firstly, let us introduce the notations that we adopt in this paper. Throughout this paper, Ω

is a nonempty bounded connected open subset of Rd (d = 2, 3) with a smooth (at least C2)
boundary Γ := ∂Ω. The unit normal to Γ pointing outwards is denoted by n and ∂nu is
a normal derivative of a function u. We denote respectively by L2(Ω) and L2(Γ) the usual
Lebesgue spaces endowed with their standard norms on Ω and Γ. Moreover, for k ≥ 1, Hk+1(Ω)
denotes the usual Sobolev space endowed with its standard norm. We also consider the Sobolev
spaces Hk+1(Γ) on the boundary as defined e.g. in [23, §2.3]. It is recalled that the norm
on H1(Ω) is: ∥u∥2H1(Ω) := ∥u∥2L2(Ω) + ∥∇Γu∥2L2(Ω), where ∇Γ is the tangential gradient defined
below; and that ∥u∥2Hk+1(Γ) := ∥u∥2Hk(Γ) + ∥∇Γu∥2Hk(Γ). Throughout this work, we rely on the
following Hilbert space (see [23])

H1(Ω,Γ) := {u ∈ H1(Ω), u|Γ ∈ H1(Γ)},

equipped with the norm ∥u∥2H1(Ω,Γ) := ∥u∥2H1(Ω) + ∥u∥2H1(Γ). In a similar way is defined the
following space L2(Ω,Γ) := {u ∈ L2(Ω), u|Γ ∈ L2(Γ)}, equipped with the norm ∥u∥2L2(Ω,Γ) :=

∥u∥2L2(Ω) + ∥u∥2L2(Γ). More generally, we define Hk+1(Ω,Γ) := {u ∈ Hk+1(Ω), u|Γ ∈ Hk+1(Γ)}.
Secondly, we recall the definition of the tangential operators (see, e.g., [22]).

Definition 1. Let w ∈ H1(Γ), W ∈ H1(Γ,Rd) and u ∈ H2(Γ). Then the following operators are
defined on Γ:

• the tangential gradient of w given by ∇Γw := ∇w̃ − (∇w̃ · n)n, where w̃ ∈ H1(Rd) is any
extension of w;

• the tangential divergence of W given by divΓW := divW̃ − (DW̃n) · n, where W̃ ∈
H1(Rd,Rd) is any extension of W and DW̃ = (∇W̃i)

d
i=1 is the differential matrix of

the extension W̃ ;

• the Laplace-Beltrami operator of u given by ∆Γu := divΓ(∇Γu).

Additionally, the constructions of the mesh used in Section 3 and of the lift procedure
presented in Section 4 are based on the following fundamental result that may be found in [11]
and [20, §14.6]. For more details on the geometrical properties of the tubular neighborhood and
the orthogonal projection defined below, we refer to [12, 13, 16].
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Proposition 1. Let Ω be a nonempty bounded connected open subset of Rd with a C2 bound-
ary Γ = ∂Ω. Let d : Rd → R be the signed distance function with respect to Γ defined by,

d(x) :=

 −dist(x,Γ) if x ∈ Ω,
0 if x ∈ Γ,
dist(x,Γ) otherwise,

with dist(x,Γ) := inf{|x− y|, y ∈ Γ}.

Then there exists a tubular neighborhood UΓ := {x ∈ Rd; |d(x)| < δΓ} of Γ, of sufficiently
small width δΓ, where d is a C2 function. Its gradient ∇d is an extension of the external unit
normal n to Γ. Additionally, in this neighborhood UΓ, the orthogonal projection b onto Γ is
uniquely defined and given by,

b : x ∈ UΓ 7−→ b(x) := x− d(x)∇d(x) ∈ Γ.

Finally, the variational formulation of Problem (1) is obtained, using the integration by parts
formula on the surface Γ (see, e.g. [22]), and is given by,

find u ∈ H1(Ω,Γ) such that a(u, v) = l(v), ∀ v ∈ H1(Ω,Γ), (2)

where the bilinear form a, defined on H1(Ω,Γ)2, is given by,

a(u, v) :=

∫
Ω

∇u · ∇v dx+ κ

∫
Ω

uv dx+ β

∫
Γ

∇Γu · ∇Γv dσ + α

∫
Γ

uv dσ,

and the linear form l, defined on H1(Ω,Γ), is given by,

l(v) :=

∫
Ω

fv dx+

∫
Γ

gv dσ.

The following theorem claims the well-posedness of the problem (2) proven in [8, th. 2] and [23,
th. 3.3] and establishes the solution regularity proven in [23, th. 3.4].

Theorem 1. Let Ω and Γ = ∂Ω be as stated previously. Let α, β > 0, κ ≥ 0, and f ∈ L2(Ω),
g ∈ L2(Γ). Then there exists a unique solution u ∈ H1(Ω,Γ) to problem (2).

Moreover, if Γ is of class Ck+1, and f ∈ Hk−1(Ω), g ∈ Hk−1(Γ), then the solution u of (2)
is in Hk+1(Ω,Γ) and is the strong solution of the Ventcel problem (1). Additionally, there
exists c > 0 such that the following inequality holds,

∥u∥Hk+1(Ω,Γ) ≤ c(∥f∥Hk−1(Ω) + ∥g∥Hk−1(Γ)).

3 Curved mesh definition
In this section we briefly recall the construction of curved meshes of geometrical order r ≥ 1

of the domain Ω and introduce some notations. We refer to [8, Section 2] for details and examples
(see also [18, 27, 14, 2]). Recall for r ≥ 1, the set of polynomials in Rd of order r or less is
denoted by Pr. From now on, the domain Ω, is assumed to be at least Cr+2 regular, and T̂
denotes the reference simplex of dimension d. In a nutshell, the way to proceed is the following.

1. Construct an affine mesh T (1)
h of Ω composed of simplices T and define the affine trans-

formation FT : T̂ → T := FT (T̂ ) associated to each simplice T .

2. For each simplex T ∈ T (1)
h , a mapping F

(e)
T : T̂ → T (e) := F

(e)
T (T̂ ) is designed and the

resulting exact elements T (e) will form a curved exact mesh T (e)
h of Ω.

3. For each T ∈ T (1)
h , the mapping F

(r)
T is the Pr interpolant of F (e)

T . The curved mesh T (r)
h

of order r is composed of the elements T (r) := F
(r)
T (T̂ ).
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3.1 Affine mesh T (1)
h

Let T (1)
h be a polyhedral mesh of Ω made of simplices of dimension d (triangles or tetrahedra),

it is chosen as quasi-uniform and henceforth shape-regular (see [7, definition 4.4.13]). Define
the mesh size h := max{diam(T ); T ∈ T (1)

h }, where diam(T ) is the diameter of T . The mesh
domain is denoted by Ω

(1)
h := ∪

T∈T (1)
h

T . Its boundary denoted by Γ
(1)
h := ∂Ω

(1)
h is composed

of (d− 1)-dimensional simplices that form a mesh of Γ = ∂Ω. The vertices of Γ(1)
h are assumed

to lie on Γ.
For T ∈ T (1)

h , we define an affine function that maps the reference element onto T ,

FT : T̂ → T := FT (T̂ )

Remark 1. For a sufficiently small mesh size h, the mesh boundary satisfies Γ
(1)
h ⊂ UΓ,

where UΓ is the tubular neighborhood given in proposition 1. This guaranties that the orthogonal
projection b : Γ

(1)
h → Γ is one to one which is required for the construction of the exact mesh.

3.2 Exact mesh T (e)
h

In the 1970’s, Scott gave an explicit construction of an exact triangulation in two dimensions
in [27], generalised by Lenoir in [24] afterwards (see also [18, §4] and [17, §3.2]). The present
definition of an exact transformation F

(e)
T combines the definitions found in [24, 27] with the

projection b as used in [14].

Let us first point out that for a sufficiently small mesh size h, a mesh element T cannot
have d + 1 vertices on the boundary Γ, due to the quasi uniform assumption imposed on the
mesh T (1)

h . A mesh element is said to be an internal element if it has at most one vertex on the
boundary Γ.

Definition 2. Let T ∈ T (1)
h be a non-internal element (having at least 2 vertices on the bound-

ary). Denote vi = FT (v̂i) as its vertices, where v̂i are the vertices of T̂ . We define εi = 1
if vi ∈ Γ and εi = 0 otherwise. To x̂ ∈ T̂ is associated its barycentric coordinates λi associated
to the vertices v̂i of T̂ and λ∗(x̂) :=

∑d+1
i=1 εiλi (shortly denoted by λ∗). Finally, we define

σ̂ := {x̂ ∈ T̂ ;λ∗(x̂) = 0} and the function ŷ :=
1

λ∗
∑d+1

i=1 εiλiv̂i ∈ T̂ , which is well defined

on T̂\σ̂.

T̂

• •

•

v̂1 v̂2

v̂3

•
• ŷx̂

FT T

•

•

•v2

v3

v1
Γ

•
•

y

x

Figure 1: Visualisation of the two functions ŷ : T̂ 7→ T̂ and y : T 7→ ∂T ∩ Γ in definition 3 in a
2D case

Consider a non-internal mesh element T ∈ T (1)
h and the affine transformation FT . In the

two dimensional case, FT (σ̂) will consist of the only vertex of T that is not on the boundary Γ.
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In the three dimensional case, the tetrahedral T either has 2 or 3 vertices on the boundary. In
the first case, FT (σ̂) is the edge of T joining its two internal vertices. In the second case, FT (σ̂)
is the only vertex of T .

Definition 3. We denote T (e)
h the mesh consisting of all exact elements T (e) = F

(e)
T (T̂ ),

where F
(e)
T = FT for all internal elements, as for the case of non-internal elements F

(e)
T is

given by,

F
(e)
T : T̂ −→ T (e) := F

(e)
T (T̂ )

x̂ 7−→ F
(e)
T (x̂) :=

{
x if x̂ ∈ σ̂,

x+ (λ∗)r+2(b(y)− y) if x̂ ∈ T̂\σ̂,

(3)

with x = FT (x̂) and y = FT (ŷ). It has been proven in [18] that F
(e)
T is a C1-diffeomorphism

and Cr+1 regular on T̂ .

Remark 2. For x ∈ T ∩ Γh, we have that λ∗ = 1 and so y = x inducing that F (e)
T (x̂) = b(x).

Then F
(e)
T ◦ F−1

T = b on T ∩ Γh.

3.3 Curved mesh T (r)
h of order r

The exact mapping F
(e)
T , defined in (3), is interpolated as a polynomial of order r ≥ 1

in the classical Pr-Lagrange basis on T̂ . The interpolant is denoted by F
(r)
T , which is a C1-

diffeomorphism and is in Cr+1(T̂ ) (see [9, chap. 4.3]). For more exhaustive details and properties
of this transformation, we refer to [18, 10, 9]. Note that, by definition, F (r)

T and F
(e)
T coincide

on all Pr-Lagrange nodes. The curved mesh of order r is T (r)
h := {T (r);T ∈ T (1)

h }, Ω
(r)
h :=

∪
T (r)∈T (r)

h

T (r) is the mesh domain and Γ
(r)
h := ∂Ω

(r)
h is its boundary.

4 Functional lift
We recall that r ≥ 1 is the geometrical order of the curved mesh. With the help of afore-

mentioned transformations, we define lifts to transform a function on a domain Ω
(r)
h or Γ(r)

h into
a function defined on Ω or Γ respectively, in order to compare the numerical solutions to the
exact one.

We recall that the idea of lifting a function from the discrete domain onto the continuous one
was already treated and discussed in many articles dating back to the 1970’s, like [25, 27, 24, 2]
and others. Surface lifts were firstly introduced in 1988 by Dziuk in [15], to the extend of our
knowledge, and discussed in more details and applications by Demlow in many of his articles
(see [12, 13, 3, 5]).

4.1 Surface and volume lift definitions
Definition 4 (Surface lift). Let uh ∈ L2(Γ

(r)
h ). The surface lift uL

h ∈ L2(Γ) associated to uh is
defined by,

uL
h ◦ b := uh,

where b : Γ
(r)
h → Γ is the orthogonal projection, defined in Proposition 1. Likewise, to u ∈ L2(Γ)

is associated its inverse lift u−L given by, u−L := u ◦ b ∈ L2(Γ
(r)
h ).
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The use of the orthogonal projection b to define the surface lift is natural since b is well
defined on the tubular neighborhood UΓ of Γ (see Proposition 1) and henceforth on Γ

(r)
h ⊂ UΓ

for sufficiently small mesh size h.
A volume lift is defined, using the notations in definition 2, we introduce the transforma-

tion G
(r)
h : Ω

(r)
h → Ω (see figure 2) given piecewise for all T (r) ∈ T (r)

h by,

G
(r)
h |

T (r)
:= F

(e)

T (r) ◦ (F
(r)
T )−1, F

(e)

T (r)(x̂) :=

{
x if x̂ ∈ σ̂

x+ (λ∗)r+2(b(y)− y) if x̂ ∈ T̂\σ̂ , (4)

with x := F
(r)
T (x̂) and y := F

(r)
T (ŷ) (see figure 1 for the affine case). Notice that this implies

that G
(r)
h |

T (r)
= id|

T (r)
, for any internal mesh element T (r) ∈ T (r)

h . Note that, by construc-

tion, G
(r)
h is globally continuous and piecewise differentiable on each mesh element. For the

remainder of this article, the following notations are crucial. DG
(r)
h denotes the differential

of G(r)
h , (DG

(r)
h )t is its transpose and Jh is its Jacobin.

T (2)

•

•

•v1

v3

v2

v5

v4

v6

•

• •

Γ

G
(2)
h

Γ

T (e)

•

•

•v1

v3

v2

v5

v4

v6

•

• •

Figure 2: Visualisation of G(2)
h : T (2) → T (e) in a 2D case, for a quadratic case r = 2.

Definition 5 (Volume lift). Let uh ∈ L2(Ω
(r)
h ). We define the volume lift associated to uh,

denoted uℓ
h ∈ L2(Ω), by,

uℓ
h ◦G(r)

h := uh.

In a similar way, to u ∈ L2(Ω) is associated its inverse lift u−ℓ ∈ L2(Ω
(r)
h ) given by u−ℓ :=

u ◦G(r)
h .

Proposition 2. The volume and surface lifts coincide on Γ
(r)
h ,

∀ uh ∈ H1(Ω
(r)
h ), (Tr uh)

L
= Tr(uℓ

h).

Consequently, the surface lift vLh (resp. the inverse lift v−L) will now be simply denoted by vℓh
(resp. v−ℓ).

Proof. Taking x ∈ T (r) ∩ Γ
(r)
h , x̂ = (F

(r)
T )(−1)(x) satisfies λ∗ = 1 and so ŷ = x̂ and y = x.

Thus F
(e)

T (r)(x̂) = b(x), in other words,

G
(r)
h (x) = F

(e)

T (r) ◦ (F
(r)
T )−1(x) = b(x), ∀ x ∈ T (r) ∩ Γ

(r)
h .
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Proposition 3. Let T (r) ∈ T (r)
h . Then the mapping G

(r)
h |

T (r)
is Cr+1(T (r)) regular and a C1-

diffeomorphism from T (r) onto T (e). Additionally, for a sufficiently small mesh size h, there
exists a constant c > 0, independent of h, such that,

∀ x ∈ T (r), ∥DG
(r)
h (x)− Id∥ ≤ chr and |Jh(x)− 1| ≤ chr, (5)

where G
(r)
h is defined in (4) and Jh is its Jacobin.

The full proof of this proposition is partially adapted from [18] and has been detailed in
appendix A.

Remark 3 (Lift regularity). The lift transformation G
(r)
h : Ω

(r)
h → Ω in (4) involves the

function,
ρT (r) : x̂ ∈ T̂ 7→ (λ∗)s(b(y)− y),

with an exponent s = r + 2 inherited from [18]: this exponent value guaranties the Cr+1 (piece-
wise) regularity of the function G

(r)
h . However, decreasing that value to s = 2 still ensures

that G
(r)
h is a (piecewise) C1 diffeomorphism and also that Inequalities (5) hold: this can be

seen when examining the proof of Proposition 3 in Appendix A. Consequently, the convergence
theorem 2 still holds when setting s = 2 in the definition of ρT (r) .

Remark 4 (Former lift definition). The volume lift defined in (5) is an adaptation of the
lift definition in [18], which however does not fulfill the property 2. Precisely, in [18], to uh ∈
H1(Ω

(r)
h ) is associated the lifted function uℓ

h ∈ H1(Ω), given by uℓ
h◦Gh := uh, where Gh : Ω

(r)
h →

Ω is defined piecewise, for each mesh element T (r) ∈ T (r)
h , by Gh|

T (r)
:= F

(e)
T ◦ (F

(r)
T )−1,

where T is the affine element relative to T (r), F (e)
T is defined in (3) and F

(r)
T is its Pr-Lagrangien

interpolation given in section 3.3. However, this transformation does not coincide with the
orthogonal projection b, on the mesh boundary Γ

(r)
h . Indeed, since F

(e)
T ◦F−1

T = b on T ∩Γh (see
Remark 2), we have,

Gh(x) = b ◦ FT ◦ (F (r)
T )−1(x) ̸= b(x), ∀ x ∈ Γ

(r)
h ∩ T (r).

Consequently in this case, (Tr uh)
L ̸= Tr(uℓ

h).

4.2 Lift of the variational formulation
With the lift operator, one may express an integral over Γ(r)

h (resp. Ω(r)
h ) with respect to one

over Γ ( resp. Ω), as will be discussed in this section.

Surface integrals In this subsection, all results stated may be found alongside their proofs
in [12, 4], but we recall some necessary informations for the sake of completeness. For extensive
details, we also refer to [13, 16, 15]. Throughout the rest of the paper, dσ and dσh denote
respectively the surface measures on Γ and on Γ

(r)
h .

Let Jb be the Jacobian of the orthogonal projection b, defined in Proposition 1, such that
dσ(b(x)) = Jb(x) dσh(x), for all x ∈ Γ

(r)
h . Notice that Jb is bounded independently of h and its

detailed expression may be found in [12, 13]. Consider also the lift of Jb given by Jℓ
b ◦ b = Jb

(see Definition 4).

Let uh, vh ∈ H1(Γh) with uℓ
h, v

ℓ
h ∈ H1(Γ) as their respected lifts. Then, one has,∫
Γ
(r)
h

uhvh dσh =

∫
Γ

uℓ
hv

ℓ
h

dσ

Jℓ
b

. (6)
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A similar equation may be written with tangential gradients. We start by given the following
notations. The outer unit normal vectors over Γ and Γ

(r)
h are respectively denoted by n and nhr.

Denote P := Id−n⊗n and Ph := Id−nhr⊗nhr respectively as the orthogonal projections over
the tangential spaces of Γ and Γ

(r)
h . Additionally, the Weingarten map H : Rd → Rd×d is given

by H := D2d, where d is the signed distance function (see Proposition 1). With the previous
notations, we have,

∇Γh
vh(x) = Ph(I − dH)P∇Γv

ℓ
h(b(x)), ∀ x ∈ Γ

(r)
h .

Using this equality, we may derive the following expression,∫
Γ
(r)
h

∇
Γ
(r)
h

uh · ∇
Γ
(r)
h

vh dσh =

∫
Γ

Aℓ
h∇Γu

ℓ
h · ∇Γv

ℓ
h dσ, (7)

where Aℓ
h is the lift of the matrix Ah given by,

Ah(x) :=
1

Jb(x)
P (I − dH)Ph(I − dH)P (x), ∀ x ∈ Γ

(r)
h . (8)

Volume integrals Similarly, consider uh, vh ∈ H1(Ωh) and let uℓ
h, v

ℓ
h ∈ H1(Ω) be their re-

spected lifts (see Definition 5), we have,∫
Ωh

uhvh dx =

∫
Ω

uℓ
hv

ℓ
h

1

Jℓ
h

dy, (9)

where Jh denotes the Jacobian of G(r)
h and Jℓ

h is its lift given by Jℓ
h ◦G(r)

h = Jh.
Additionally, the gradient can be written as follows, for any x ∈ Ω

(r)
h ,

∇vh(x) = ∇(vℓh ◦G(r)
h )(x) = TDG

(r)
h (x)(∇vℓh) ◦ (G

(r)
h (x)).

Using a change of variables z = G
(r)
h (x) ∈ Ω, one has, (∇vh)

ℓ(z) = TDG
(r)
h (x)∇vℓh(z). Finally,

introducing the notation,
G(r)
h (z) := TDG

(r)
h (x), (10)

one has, ∫
Ω

(r)
h

∇uh · ∇vh dx =

∫
Ω

G(r)
h (∇uℓ

h) · G
(r)
h (∇vℓh)

dx

Jℓ
h

. (11)

4.3 Useful estimations
Surface estimations We recall two important estimates proved in [12]. There exists a con-
stant c > 0 independent of h such that,

||Aℓ
h − P ||L∞(Γ) ≤ chr+1 and

∥∥∥∥1− 1

Jℓ
b

∥∥∥∥
L∞(Γ)

≤ chr+1, (12)

where Aℓ
h is the lift of Ah defined in (8) and Jb is the Jacobin of the projection b.

9



Volume estimations A direct consequence of the proposition 3 is that both DG
(r)
h and Jh

are bounded on every T (r) ∈ T (r)
h . As an extension of that, by Definition 5 of the lift, both G(r)

h

and Jℓ
h are also bounded on T (e). Additionally, the inequalities (5) will not be directly used in

the error estimations in Section 6, the following inequalities will be used instead,

∀ x ∈ T (e), ∥G(r)
h (x)− Id∥ ≤ chr and

∣∣∣∣ 1

Jℓ
h(x)

− 1

∣∣∣∣ ≤ chr, (13)

where G(r)
h is given in (10). These inequalities are a consequence of the lift applied on the

inequalities (5).

Remark 5. Let us emphasize that, there exists an equivalence between the Hm-norms over Ωh

(resp. Γh) and the Hm-norms over Ω (resp. Γ), for m = 0, 1. Let vh ∈ H1(Ωh,Γh) and
let vℓh ∈ H1(Ω,Γ) be its lift, then for m = 0, 1, there exist strictly positive constants independent
of h such that,

c1∥vℓh∥Hm(Ω) ≤ ∥vh∥Hm(Ωh) ≤ c2∥vℓh∥Hm(Ω),
c3∥vℓh∥Hm(Γ) ≤ ∥vh∥Hm(Γh) ≤ c4∥vℓh∥Hm(Γ).

The second estimations are proved in [12]. As for the first inequalities, one may prove them while
using the equations (9) and (11). They hold due to the fact that Jh and DG

(r)
h (respectively 1

Jℓ
h

and G(r)
h ) are bounded on T (r) (resp. T (e)), as a consequence of the proposition 3 and the

inequalities in (13).

5 Finite element approximation
In this section, is presented the finite element approximation of problem (1) using Pk-

Lagrange finite element approximation. We refer to [19, 9] for more details on finite element
methods.

5.1 Finite element spaces and interpolant definition

Let k ≥ 1, given a curved mesh T (r)
h , the Pk-Lagrangian finite element space is given by,

Vh := {χ ∈ C0(Ω
(r)
h ); χ|T = χ̂ ◦ (F (r)

T )−1, χ̂ ∈ Pk(T̂ ), ∀ T ∈ T (r)
h }.

Let the Pr-Lagrangian interpolation operator be denoted by I(r) : v ∈ C0(Ω
(r)
h ) 7→ I(r)(v) ∈ Vh.

The lifted finite element space (see Section 4.1 for the lift definition), is defined by,

Vℓ
h := {vℓh; vh ∈ Vh},

and its lifted interpolation operator Iℓ given by,

Iℓ : C0(Ω) −→ Vℓ
h

v 7−→ Iℓ(v) :=
(
I(r)(v−ℓ)

)ℓ
.

(14)

Notice that, since Ω is an open subset of R2 or R3, then we have the following Sobolev injec-
tion Hk+1(Ω) ↪→ C0(Ω). Thus, any function w ∈ Hk+1(Ω) may be associated to an interpolation
element Iℓ(w) ∈ Vℓ

h.

The lifted interpolation operator plays a part in the error estimation and the following
interpolation inequality will display the finite element error in the estimations.
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Proposition 4. Let v ∈ Hk+1(Ω,Γ) and 2 ≤ m ≤ k + 1. There exists a constant c > 0
independent of h such that the interpolation operator Iℓ satisfies the following inequality,

∥v − Iℓv∥L2(Ω,Γ) + h∥v − Iℓv∥H1(Ω,Γ) ≤ chm∥v∥Hm(Ω,Γ).

Proof. Using the norm equivalence in Remark 5, this inequality derives from given interpolation
theory (see [2, Corollary 4.1] for norms over Ω and [12, 13] for norms over Γ). Indeed, for
v ∈ Hk+1(Ω,Γ) and s = 0, 1, we have,

∥v − Iℓv∥Hs(Ω,Γ) =
∥∥∥(v−ℓ)ℓ −

(
I(r)(v−ℓ)

)ℓ∥∥∥
Hs(Ω,Γ)

≤ c
∥∥∥v−ℓ − I(r)(v−ℓ)

∥∥∥
Hs(Ω

(r)
h ,Γ

(r)
h )

≤ chm−s∥v−ℓ∥
Hm(Ω

(r)
h ,Γ

(r)
h )

≤ chm−s∥v∥Hm(Ω,Γ),

for a constant c > 0 independent of h.

5.2 Finite element formulation
From now on, to simplify the notations, we denote Ωh and Γh to refer to Ω

(r)
h and Γ

(r)
h , for

any geometrical order r ≥ 1.

Discrete formulation Given f ∈ L2(Ω) and g ∈ L2(Γ) the right hand side of Problem (1),
we define (following [18, 12]) the following linear form lh on Vh by,

lh(vh) :=

∫
Ωh

vhf
−ℓJh dx+

∫
Γh

vhg
−ℓJb dσh,

where Jh (resp. Jb) is the Jacobin of G
(r)
h (resp. the orthogonal projection b). With this

definition, lh(vh) = l(vℓh), for any vh ∈ Vh, where l is the right hand side in the formulation (2).
The approximation problem is to find uh ∈ Vh such that,

ah(uh, vh) = lh(vh), ∀ vh ∈ Vh, (15)

where ah is the following bilinear form, defined on Vh × Vh,

ah(uh, vh) :=

∫
Ωh

∇uh · ∇vh dx+ κ

∫
Ωh

uhvh dx

+ β

∫
Γh

∇Γh
uh · ∇Γh

vh dσh + α

∫
Γh

uhvh dσh,

Remark 6. Since ah is bilinear symmetric positively defined on a finite dimensional space, then
there exists a unique solution uh ∈ Vh to the discrete problem (15).

Lifted discrete formulation We define the lifted bilinear form aℓh, defined on Vℓ
h × Vℓ

h,
throughout,

aℓh(u
ℓ
h, v

ℓ
h) = ah(uh, vh) for uh, vh ∈ Vh,

applying (11), (9), (7) and (6), its expression is given by,

aℓh(u
ℓ
h, v

ℓ
h) =

∫
Ω

G(r)
h (∇uℓ

h) · G
(r)
h (∇vℓh)

dx

Jℓ
h

+ β

∫
Γ

Aℓ
h∇Γu

ℓ
h · ∇Γv

ℓ
h dσ

+ κ

∫
Ω

(uh)
ℓ(vh)

ℓ dx

Jℓ
h

+ α

∫
Γ

(uh)
ℓ(vh)

ℓ dσ

Jℓ
b

.
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Keeping in mind that u is the solution of (2) and uℓ
h is the lift of the solution of (15), for

any vℓh ∈ Vℓ
h ⊂ H1(Ω,Γ), we notice that,

a(u, vℓh) = l(vℓh) = lh(vh) = ah(uh, vh) = aℓh(u
ℓ
h, v

ℓ
h). (16)

Using the previous points, we can also define the lifted formulation of the discrete problem (15)
by: find uℓ

h ∈ Vℓ
h such that,

aℓh(u
ℓ
h, v

ℓ
h) = l(vℓh), ∀ vℓh ∈ Vℓ

h.

6 Error analysis
Throughout this section, c refers to a positive constant independent of the mesh size h.

From now on, the domain Ω, is assumed to be at least Ck+1 regular, and the source terms in
problem (1) are assumed more regular: f ∈ Hk−1(Ω) and g ∈ Hk−1(Γ). Then according to [23,
Theorem 3.4], the exact solution u of Problem (1) is in Hk+1(Ω,Γ).

Our goal in this section is to prove the following theorem.

Theorem 2. Let u ∈ Hk+1(Ω,Γ) be the solution of the variational problem (2) and uh ∈ Vh be
the solution of the finite element formulation (15). There exists a constant c > 0 such that,

∥u− uℓ
h∥H1(Ω,Γ) ≤ c(hk + hr+1/2) and ∥u− uℓ

h∥L2(Ω,Γ) ≤ c(hk+1 + hr+1), (17)

where uℓ
h ∈ Vℓ

h denotes the lift of uh onto Ω, given in Definition 5.

The overall error in this theorem is composed of two components: the geometrical error and
the finite element error. To prove these error bounds, we proceed as follows:

1. estimate the geometric error: we bound the difference between the exact bilinear form a
and the lifted bilinear form aℓh;

2. bound the H1 error using the geometric and interpolation error estimation, proving the
first inequality of (17);

3. an Aubin-Nitsche argument helps us prove the second inequality of (17).

6.1 Geometric error
First of all, we introduce Bℓ

h ⊂ Ω as the union of all the non-internal elements of the exact
mesh T (e)

h ,
Bℓ

h = { T (e) ∈ T (e)
h ; T (e) has at least two vertices on Γ}.

Note that, by definition of Bℓ
h, we have,

1

Jℓ
h

− 1 = 0 and G(r)
h − Id = 0 in Ω\Bℓ

h. (18)

The following corollary involving Bℓ
h is a direct consequence of [18, Lemma 4.10] or [21, Theo-

rem 1.5.1.10].

Corollary 1. Let v ∈ H1(Ω) and w ∈ H2(Ω). Then, for a sufficiently small h, there exists c > 0
such that the following inequalities hold,

∥v∥L2(Bℓ
h)

≤ ch1/2∥v∥H1(Ω) and ∥w∥H1(Bℓ
h)

≤ ch1/2∥w∥H2(Ω). (19)
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The difference between a and ah, referred to as the geometric error, is evaluated in the
following proposition.

Proposition 5. Consider v, w ∈ Vℓ
h. There exists c > 0, such that the following geometric

error estimation hold,

|a(v, w)− aℓh(v, w)| ≤ chr∥∇v∥L2(Bℓ
h)
∥∇w∥L2(Bℓ

h)
+ chr+1∥v∥H1(Ω,Γ)∥w∥H1(Ω,Γ). (20)

The following proof is inspired by [18, lemma 6.2]. The main difference is the use of the mod-
ified lift given in definition 5 and the corresponding transformation G

(r)
h alongside its associated

matrix G(r)
h , defined in (10), which leads to several changes in the proof.

Proof. Let v, w ∈ Vℓ
h. By the definitions of the bilinear forms a and aℓh, we have,

|a(v, w)− aℓh(v, w)| ≤ a1(v, w) + κa2(v, w) + βa3(v, w) + αa4(v, w),

where the terms ai, defined on Vℓ
h × Vℓ

h, are respectively given by,

a1(v, w) :=

∣∣∣∣∫
Ω

∇w · ∇v − G(r)
h ∇w · G(r)

h ∇v
1

Jℓ
h

dx

∣∣∣∣ , a2(v, w) :=

∣∣∣∣∫
Ω

wv (1− 1

Jℓ
h

) dx

∣∣∣∣ ,
a3(v, w) :=

∣∣∣∣∫
Γ

(Aℓ
h − Id) ∇Γw · ∇Γv dσ

∣∣∣∣ , a4(v, w) :=

∣∣∣∣∫
Γ

wv (1− 1

Jℓ
b

) dσ

∣∣∣∣ .
The next step is to bound each ai, for i = 1, 2, 3, 4, while using (13) and (12).

First of all, notice that a1(v, w) ≤ Q1 +Q2 +Q3, where,

Q1 :=

∣∣∣∣∫
Ω

(G(r)
h − Id) ∇w · G(r)

h ∇v
1

Jℓ
h

dx

∣∣∣∣ ,
Q2 :=

∣∣∣∣∫
Ω

∇w · (G(r)
h − Id)∇v

1

Jℓ
h

dx

∣∣∣∣ ,
Q3 :=

∣∣∣∣∫
Ω

∇w · ∇v(
1

Jℓ
h

− 1) dx

∣∣∣∣ .
We use (18) and (13) to estimate each Qj as follows,

Q1 =

∣∣∣∣∣
∫
Bℓ

h

(G(r)
h − Id) ∇w · G(r)

h ∇v
1

Jℓ
h

dx

∣∣∣∣∣ ≤ chr∥∇w∥L2(Bℓ
h)
∥∇v∥L2(Bℓ

h)
,

Q2 =

∣∣∣∣∣
∫
Bℓ

h

∇w · (G(r)
h − Id)∇v

1

Jℓ
h

dx

∣∣∣∣∣ ≤ chr∥∇w∥L2(Bℓ
h)
∥∇v∥L2(Bℓ

h)
,

Q3 =

∣∣∣∣∣
∫
Bℓ

h

∇w · ∇v(
1

Jℓ
h

− 1) dx

∣∣∣∣∣ ≤ chr∥∇w∥L2(Bℓ
h)
∥∇v∥L2(Bℓ

h)
.

Summing up the latter terms, we get, a1(v, w) ≤ chr∥∇w∥L2(Bℓ
h)
∥∇v∥L2(Bℓ

h)
.

Similarly, to bound a2, we proceed by using (18) and (13) as follows,

a2(v, w) =

∣∣∣∣∣
∫
Bℓ

h

wv (1− 1

Jℓ
h

) dx

∣∣∣∣∣ ≤ chr∥w∥L2(Bℓ
h)
∥v∥L2(Bℓ

h)
.

Since v, w ∈ Vℓ
h ⊂ H1(Ω,Γ), we use (19) to get,

a2(v, w) ≤ chr+1∥w∥H1(Ω)∥v∥H1(Ω).
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Before estimating a3, we need to notice that, by definition of the tangential gradient over Γ,
P∇Γ = ∇Γ where P = Id− n⊗ n is the orthogonal projection over the tangential spaces of Γ.
With the estimation (12), we get,

a3(v, w) =

∣∣∣∣∫
Γ

(Aℓ
h − P ) ∇Γw · ∇Γv dσ

∣∣∣∣
≤ ||Aℓ

h − P ||L∞(Γ)∥w∥H1(Γ)∥v∥H1(Γ) ≤ chr+1∥w∥H1(Γ)∥v∥H1(Γ).

Finally, using (12), we estimate a4 as follows,

a4(v, w) =

∣∣∣∣∫
Γ

wv (1− 1

Jℓ
b

) dσ

∣∣∣∣ ≤ chr+1∥w∥L2(Γ)∥v∥L2(Γ).

The inequality (20) is easy to obtain when summing up ai, for all i = 1, 2, 3, 4.

Remark 7. Let us point out that, with u (resp. uh) the solution of the problem (2) (resp. (15)),
we have,

∥uℓ
h∥H1(Ω,Γ) ≤ c∥u∥H1(Ω,Γ), (21)

where c > 0 is independent with respect to h. In fact, a relatively easy way to prove it is by
employing the geometrical error estimation (20), as follows,

cc∥uℓ
h∥2H1(Ω,Γ) ≤ a(uℓ

h, u
ℓ
h) ≤ a(uℓ

h, u
ℓ
h)− a(u, uℓ

h) + a(u, uℓ
h),

where cc is the coercivity constant. Using (16), we have,

cc∥uℓ
h∥2H1(Ω,Γ) ≤ a(uℓ

h, u
ℓ
h)− aℓh(u

ℓ
h, u

ℓ
h) + a(u, uℓ

h) = (a− aℓh)(u
ℓ
h, u

ℓ
h) + a(u, uℓ

h).

Thus applying the estimation (20) along with the continuity of a, we get,

∥uℓ
h∥2H1(Ω,Γ) ≤ chr∥∇uℓ

h∥2L2(Bℓ
h)

+ chr+1∥uℓ
h∥2H1(Ω,Γ) + c∥u∥H1(Ω,Γ)∥uℓ

h∥H1(Ω,Γ)

≤ chr∥uℓ
h∥2H1(Ω,Γ) + c∥u∥H1(Ω,Γ)∥uℓ

h∥H1(Ω,Γ).

Thus, we have,
(1− chr)∥uℓ

h∥2H1(Ω,Γ) ≤ c∥u∥H1(Ω,Γ)∥uℓ
h∥H1(Ω,Γ).

For a sufficiently small h, we have 1− chr > 0, which concludes the proof.

6.2 Proof of the H1 error bound in Theorem 2
Let u ∈ Hk+1(Ω,Γ) and uh ∈ Vh be the respective solutions of (2) and (15).
To begin with, we use the coercivity of the bilinear form a to obtain, denoting cc as the

coercivity constant,

cc∥Iℓu− uℓ
h∥2H1(Ω,Γ) ≤ a(Iℓu− uℓ

h, Iℓu− uℓ
h) = a(Iℓu, Iℓu− uℓ

h)− a(uℓ
h, Iℓu− uℓ

h)

= aℓh(u
ℓ
h, Iℓu− uℓ

h)− a(uℓ
h, Iℓu− uℓ

h) + a(Iℓu, Iℓu− uℓ
h)− aℓh(u

ℓ
h, Iℓu− uℓ

h),

where. in the latter equation, we added and subtracted aℓh(u
ℓ
h, Iℓu− uℓ

h). Thus,

cc∥Iℓu− uℓ
h∥2H1(Ω,Γ) ≤

(
aℓh − a

)
(uℓ

h, Iℓu− uℓ
h) + a(Iℓu, Iℓu− uℓ

h)− aℓh(u
ℓ
h, Iℓu− uℓ

h).

Applying (16) with v = Iℓu− uℓ
h ∈ Vℓ

h, we have,

cc∥Iℓu− uℓ
h∥2H1(Ω,Γ) ≤ |(aℓh − a)(uℓ

h, Iℓu− uℓ
h)|+ |a(Iℓu− u, Iℓu− uℓ

h)|.
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Taking advantage of the continuity of a and the estimation (20), we obtain,

cc∥Iℓu− uℓ
h∥2H1(Ω,Γ)

≤ c
(
hr∥∇uℓ

h∥L2(Bℓ
h)
∥∇(Iℓu− uℓ

h)∥L2(Bℓ
h)

+ hr+1∥uℓ
h∥H1(Ω,Γ)∥Iℓu− uℓ

h∥H1(Ω,Γ)

)
+ ccont∥Iℓu− u∥H1(Ω,Γ)∥Iℓu− uℓ

h∥H1(Ω,Γ)

≤ c
(
hr∥∇uℓ

h∥L2(Bℓ
h)

+ hr+1∥uℓ
h∥H1(Ω,Γ)

+ ccont∥Iℓu− u∥H1(Ω,Γ)

)
∥Iℓu− uℓ

h∥H1(Ω,Γ).

Then, dividing by ∥Iℓu− uℓ
h∥H1(Ω,Γ), we have,

∥Iℓu− uℓ
h∥H1(Ω,Γ) ≤ c

(
hr∥∇uℓ

h∥L2(Bℓ
h)

+ hr+1∥uℓ
h∥H1(Ω,Γ) + ∥Iℓu− u∥H1(Ω,Γ)

)
.

To conclude, we use the latter inequality in the following estimation as follows,

∥u− uℓ
h∥H1(Ω,Γ) ≤ ∥u− Iℓu∥H1(Ω,Γ) + ∥Iℓu− uℓ

h∥H1(Ω,Γ)

≤ c
(
hr∥∇uℓ

h∥L2(Bℓ
h)

+ hr+1∥uℓ
h∥H1(Ω,Γ) + ∥Iℓu− u∥H1(Ω,Γ)

)
Using the proposition 4 and the inequalities (19), we have,

∥u− uℓ
h∥H1(Ω,Γ)

≤ chr(∥∇(uℓ
h − u)∥L2(Bℓ

h)
+ ∥∇u∥L2(Bℓ

h)
) + chr+1∥uℓ

h∥H1(Ω,Γ) + chk∥u∥Hk+1(Ω,Γ)

≤ chr(∥uℓ
h − u∥H1(Ω,Γ) + h1/2∥u∥H2(Ω)) + chr+1∥uℓ

h∥H1(Ω,Γ) + chk∥u∥Hk+1(Ω,Γ).

Thus we have,

(1− chr)∥u− uℓ
h∥H1(Ω,Γ) ≤ c

(
hr+1/2∥u∥H2(Ω) + hk∥u∥Hk+1(Ω,Γ) + hr+1∥uℓ

h∥H1(Ω,Γ)

)
.

For a sufficiently small h, we arrive at,

∥u− uℓ
h∥H1(Ω,Γ) ≤ c

(
hr+1/2∥u∥H2(Ω,Γ) + hk∥u∥Hk+1(Ω,Γ) + hr+1∥uℓ

h∥H1(Ω,Γ)

)
.

This provides the desired result using (21).

6.3 Proof of the L2 error bound in Theorem 2
Recall that u ∈ H1(Ω,Γ) is the solution of the variational problem (2), uh ∈ Vh is the solution

of the discrete problem (15). To estimate the L2 norm of the error, we define the functional Fh

by,
Fh : H1(Ω,Γ) −→ R

v 7−→ Fh(v) = a(u− uℓ
h, v).

We bound |Fh(v)| for any v ∈ H2(Ω,Γ) in the lemma 1. Afterwards an Aubin-Nitsche argument
is applied to bound the L2 norm of the error.

Lemma 1. For all v ∈ H2(Ω,Γ), there exists c > 0 such that the following inequality holds,

|Fh(v)| ≤ c(hk+1 + hr+1)∥v∥H2(Ω,Γ). (22)

Remark 8. To prove lemma 1, some key points for a function v ∈ H2(Ω,Γ) are presented.
Firstly, inequality (19) implies that,

∀ v ∈ H2(Ω,Γ), ∥∇v∥L2(Bℓ
h)

≤ ch1/2∥v∥H2(Ω). (23)
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Secondly, then the interpolation inequality in proposition 4 gives,

∀ v ∈ H2(Ω,Γ), ∥Iℓv − v∥H1(Ω,Γ) ≤ ch∥v∥H2(Ω,Γ). (24)

Applying 16 for Iℓv ∈ Vℓ
h, we have,

∀ v ∈ H2(Ω,Γ), a(u, Iℓv) = l(Iℓv) = aℓh(u
ℓ
h, Iℓv). (25)

Proof of lemma 1. Consider v ∈ H2(Ω,Γ). We may decompose |Fh(v)| in two terms as follows,

|Fh(v)| = |a(u− uℓ
h, v)| ≤ |a(u− uℓ

h, v − Iℓv)|+ |a(u− uℓ
h, Iℓv)| =: F1 + F2.

Firstly, to bound F1, we take advantage of the continuity of the bilinear form a and apply
the H1 error estimation (17), alongside the inequality (24) as follows,

F1 ≤ ccont ∥u− uℓ
h∥H1(Ω,Γ)∥v − Iℓv∥H1(Ω,Γ) ≤ c(hk + hr+1/2)h∥v∥H2(Ω,Γ)

≤ c(hk+1 + hr+3/2) ∥v∥H2(Ω,Γ).

Secondly, to estimate F2, we resort to equations (25) and (20) as follows,

F2 = |a(u, Iℓv)− a(uℓ
h, Iℓv)| = |aℓh(uℓ

h, Iℓv)− a(uℓ
h, Iℓv)| = |(aℓh − a)(uℓ

h, Iℓv)|
≤ chr∥∇uℓ

h∥L2(Bℓ
h)
∥∇(Iℓv)∥L2(Bℓ

h)
+ chr+1∥uℓ

h∥H1(Ω,Γ)∥Iℓv∥H1(Ω,Γ).

Next, we will treat the first term in the latter inequality separately. We have,

F3 := hr∥∇uℓ
h∥L2(Bℓ

h)
∥∇(Iℓv)∥L2(Bℓ

h)

≤ hr
(
∥∇(uℓ

h − u)∥L2(Bℓ
h)

+ ∥∇u∥L2(Bℓ
h)

)(
∥∇(Iℓv − v)∥L2(Bℓ

h)
+ ∥∇v∥L2(Bℓ

h)

)
≤ hr

(
∥uℓ

h − u∥H1(Ω,Γ) + ∥∇u∥L2(Bℓ
h)

)(
∥Iℓv − v∥H1(Ω,Γ) + ∥∇v∥L2(Bℓ

h)

)
.

We now apply the H1 error estimation (17), the inequality (23) and the interpolation inequal-
ity (24), as follows,

F3 ≤ c hr
(
hk + hr+1/2 + h1/2∥u∥H2(Ω,Γ)

)(
h∥v∥H2(Ω,Γ) + h1/2∥v∥H2(Ω,Γ)

)
≤ c hr h1/2

(
hk−1/2 + hr + ∥u∥H2(Ω,Γ)

)(
h1/2 + 1

)
h1/2∥v∥H2(Ω,Γ)

≤ c hr+1
(
hk−1/2 + hr + ∥u∥H2(Ω,Γ)

)(
h1/2 + 1

)
∥v∥H2(Ω,Γ).

Noticing that k − 1/2 > 0 (since k ≥ 1) and that
(
hk−1/2 + hr + ∥u∥H2(Ω,Γ)

)(
h1/2 + 1

)
is

bounded by a constant independent of h, we obtain F3 ≤ c hr+1∥v∥H2(Ω,Γ). Using the previous
expression of F2,

F2 ≤ chr+1∥v∥H2(Ω,Γ) + chr+1∥uℓ
h∥H1(Ω,Γ)∥Iℓv∥H1(Ω,Γ).

Moreover, noticing that ∥Iℓv∥H1(Ω,Γ) ≤ c∥v∥H2(Ω,Γ),

F2 ≤ chr+1∥v∥H2(Ω,Γ) + chr+1∥uℓ
h∥H1(Ω,Γ)∥v∥H2(Ω,Γ) ≤ chr+1∥v∥H2(Ω,Γ),

using (21). We conclude the proof by summing the estimates of F1 and F2.
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Proof of the L2 estimate (17). Defining e := u−uℓ
h, the aim is to estimate the following L2 error

norm: ∥e∥2L2(Ω,Γ) = ∥u − uℓ
h∥2L2(Ω) + ∥u − uℓ

h∥2L2(Γ). Let v ∈ L2(Ω,Γ). We define the following
problem: find zv ∈ H1(Ω,Γ) such that,

a(w, zv) = ⟨w, v⟩L2(Ω,Γ), ∀ w ∈ H1(Ω,Γ), (26)

Applying Theorem 1 for f = v and g = v|Γ , there exists a unique solution zv ∈ H1(Ω,Γ) to (26),
which satisfies the following inequality,

∥zv∥H2(Ω,Γ) ≤ c∥v∥L2(Ω,Γ).

Taking v = e ∈ L2(Ω,Γ) and w = e ∈ H1(Ω,Γ) in (26), we obtain Fh(ze) = a(e, ze) = ∥e∥2L2(Ω,Γ).
In this case, Theorem 1 implies,

∥ze∥H2(Ω,Γ) ≤ c∥e∥L2(Ω,Γ). (27)

Applying Inequality (22) for ze ∈ H2(Ω,Γ) and afterwards Inequality (27), we have,

∥e∥2L2(Ω,Γ) = |Fh(ze)| ≤ c(hk+1 + hr+1)∥ze∥H2(Ω,Γ) ≤ c(hk+1 + hr+1)∥e∥L2(Ω,Γ),

which concludes the proof.

7 Numerical experiments
In this section are presented numerical results aimed to illustrate the theoretical convergence

results in theorem 2. Supplementary numerical results will be provided in order to highlight
the properties of the volume lift introduced in definition 5 relatively to the lift transforma-
tion G

(r)
h : Ω

(r)
h → Ω given in (4).

The Ventcel problem (1) is considered with α = β = κ = 1 on the unit disk Ω,{
−∆u+ u = f in Ω,

−∆Γu+ ∂nu+ u = g on Γ,

with the source terms f(x, y) = −yex and g(x, y) = yex(3 + 4x − y2) corresponding to the
exact solution u = −f . The discrete problem (15) is implemented and solved using the finite
element library Cumin [26]. Curved meshes of Ω of geometrical order 1 ≤ r ≤ 3 have been
generated using the software Gmsh1. All numerical results presented in this section can be fully
reproduced using dedicated source codes available on Cumin Gitlab2.

Figure 3: Numerical solution of the Ventcel problem on affine and quadratic meshes.

1Gmsh: a three-dimensional finite element mesh generator, https://gmsh.info/
2Cumin GitLab deposit, https://gmsh.info/
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The numerical solutions uh are computed for Pk finite elements, with k = 1, . . . , 4, on series
of successively refined meshes of order r = 1, . . . , 3 , as depicted on figure 3 for coarse meshes
(affine and quadratic). For each mesh order r and each finite element degree k, the following
numerical errors are computed:

∥u− uℓ
h∥L2(Ω), ∥∇u−∇uℓ

h∥L2(Ω), ∥u− uℓ
h∥L2(Γ) and ∥∇Γu−∇Γu

ℓ
h∥L2(Γ),

with uℓ
h given in definition 5. The convergence orders of these errors, relatively to the mesh size,

are reported in tables 1 and 2.

∥u− uℓ
h∥L2(Ω) ∥∇u−∇uℓ

h∥L2(Ω)

P1 P2 P3 P4 P1 P2 P3 P4

Affine mesh (r=1) 1.98 1.99 1.97 1.97 1.00 1.50 1.49 1.49
Quadratic mesh (r=2) 2.01 3.14 3.94 3.97 1.00 2.12 3.03 3.48
Cubic mesh (r=3) 2.04 2.45 3.44 4.04 1.02 1.47 2.42 3.46

Table 1: Convergence orders, interior norms.

The convergence orders presented in table 1, relatively to L2 norms on Ω, deserve comments.
In the affine case r = 1, the figures are in perfect agreement with estimates (17): the L2 error
norm is in O(hk+1 + h2) and the L2 norm of the gradient of the error is in O(hk + h1.5). For
quadratic meshes, a super convergence is observed, the case r = 2 behaves as if r = 3: the L2

error norm is in O(hk+1 + h4) and the L2 norm of the gradient of the error is in O(hk + h3.5).
This super convergence, though not understood, has been documented and further investigated
in [8]. For the cubic case eventually, a default of order -1/2 is observed on the convergence
orders (excepted for the P1 case): the L2 error norm is in O(hk+1/2 + h4) and the L2 norm of
the gradient of the error is in O(hk−1/2 + h3.5). This default might not be in relation with the
finite element approximation since it is not observed on the quadratic case but might neither be
related with the cubic meshes since this default vanishes when considering L2 boundary errors,
see table 2. Further experiments showed us that this default is not caused by the specific Vent-
cel boundary condition, it similarly occurs when considering a Poisson problem with Neumann
boundary condition on the disk: so far we have no clues on its explanation.

∥u− uℓ
h∥L2(Γ) ∥∇Γu−∇Γu

ℓ
h∥L2(Γ)

P1 P2 P3 P4 P1 P2 P3 P4

Affine mesh (r=1) 2.00 2.03 2.01 2.01 1.00 2.00 1.98 1.98
Quadratic mesh (r=2) 2.00 3.00 4.00 4.02 1.00 2.00 3.00 4.02
Cubic mesh (r=3) 2.00 3.00 4.00 4.21 1.00 2.00 3.00 3.98

Table 2: Convergence orders, boundary norms.

Let us now discuss table 2, which reports convergence orders relatively to L2 boundary norms.
The first interesting point is that the L2 convergence towards the gradient of u is faster than
expressed in (17): O(hk + hr+1) instead of O(hk + hr+1/2). Meanwhile the L2 convergence to-
wards u behaves as expected. The super convergence in the quadratic case is similarly observed,
which meshes behave as if r = 3.

Lift transformation regularity As discussed in remark 3, the lift transformation G
(r)
h : Ω

(r)
h →

Ω in (4) has a regularity controlled by the exponent s in the term (λ⋆)s, which exponent is set
to r + 2 to ensure a piecewise Cr+1 regularity. The convergence properties should however
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remain the same when setting s = 2. This has been numerically observed: the tables 1 and 2
remain identical when setting s = 2. More surprisingly, when setting s = 1, tables 1 and 2 also
remain unchanged, though in this case estimate (5) does no longer hold. Precisely in this case,
it can be easily seen that DG

(r)
h has singularities in the non-internal elements. It seems that this

singularities “are not seen”, likely because the quadrature method nodes (used to approximate
integrals) lie away of these singularities.

∥u− uℓ
h∥L2(Ω) ∥∇u−∇uℓ

h∥L2(Ω)

P1 P2 P3 P4 P1 P2 P3 P4

Quadratic mesh (r=2) 2.01 2.51 2.49 2.49 1.00 1.52 1.49 1.49
Cubic mesh (r=3) 2.04 2.50 2.48 2.49 1.03 1.51 1.49 1.49

∥u− uℓ
h∥L2(Γ) ∥∇Γu−∇Γu

ℓ
h∥L2(Γ)

P1 P2 P3 P4 P1 P2 P3 P4

Quadratic mesh (r=2) 2.00 3.00 2.99 2.99 1.00 2.00 3.00 2.98
Cubic mesh (r=3) 2.00 3.00 2.99 2.98 1.00 2.00 3.00 2.98

Table 3: Convergence orders for the lift in [18].

Former lift definition As developed in remark 4, another lift transformation G
(r)
h : Ω

(r)
h → Ω

had formerly been introduced in [18], with different properties on the boundary. We reported
the convergence orders observed with this lift in table 3.
The first observation is that ∥u− uℓ

h∥L2(Ω) is at most in O(h2.5) whereas ∥∇u−∇uℓ
h∥L2(Ω) is at

most in O(h1.5), resulting in a clear decrease of the convergence rate as compared to tables 1
and 2. Similarly, ∥u− uℓ

h∥L2(Γ) and ∥∇u−∇uℓ
h∥L2(Γ) are at most in O(h3) whereas they could

reach O(h4) in tables 1 and 2.
Notice that the lift transformation intervenes at two different stages: for the right hand side

definition in (15) and for the error computation itself. We experienced the following. We set
the lift for the right hand side computation to the one in [18] whereas the lift for the error
computation is the one in definition 5 (so that the numerical solution uh is the same as in
table 3, only its post treatment in terms of errors is different). Then we observed that the
results are partially improved: for the P4 case on cubic meshes, ∥u − uℓ

h∥L2(Ω) = O(h3.0) and
∥∇u−∇uℓ

h∥L2(Ω) = O(h2.5), which remains lower than the convergence orders in table 1.
Still considering the lift definition in [18], we also experienced that the exponent s in the

term (λ⋆)s in the lift definition (see remark 3) has an influence on the convergence rates. Sur-
prisingly, the best convergence rates are obtained when setting s = 1: this case corresponds to
the minimal regularity on the lift transformation G

(r)
h , the differential of which (as previously

discussed) has singularities on the non-internal mesh elements. In that case however, the con-
vergence rares goes up to O(h3.5) and O(h2.5) on quadratic and cubic meshes for ∥u− uℓ

h∥L2(Ω)

and ∥∇u−∇uℓ
h∥L2(Ω) respectively. Meanwhile, it has been noticed that setting s = 1 somehow

damages the quality of the numerical solution on the domain boundary: these last results are
surprising and with no clear explanation. Eventually, when setting s ≥ 2, the convergence rates
are lower and identical to those in table 3.

A Proof of Proposition 3
Following the notations given in definition 2, we present the proof of Proposition 3 which

requires a series of preliminary results given in Propositions 6, 7 and 8. The proofs of these
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propositions are inspired by the proofs of [2, lemma 6.2], [18, lemma 4.3] and [18, proposition 4.4]
respectively.

Proposition 6. The map y : x̂ ∈ T̂\σ̂ 7→ y := F
(r)
T (ŷ) ∈ Γ

(r)
h is a smooth function and for

all m ≥ 1, there exists a constant c > 0 independent of h such that,

∥Dmy∥L∞(T̂\σ̂) ≤
ch

(λ∗)m
. (28)

Remark 9. The proof of this proposition and of the next one rely on the formula of Faà di
Bruno (see [2, equation 2.9]). This formula states that for two functions f and g, which are of
class Cm, such that f ◦ g is well defined, then,

Dm(f ◦ g) =
m∑

p=1

(
Dp(f)

∑
i∈E(m,p)

ci

m∏
q=1

Dqgiq
)
, (29)

where E(m, p) := {i ∈ Nm;
∑m

q=1 iq = p and
∑m

q=1 qiq = m} and ci are positives constants, for
all i ∈ E(m, p).

Proof of Proposition 6. We detail the proof in the 2 dimensional case, the 3D case can be proved
in a similar way.

Consider, the reference triangle T̂ with the usual orientation. Its vertices are denoted (v̂i)
3
i=1

and the associated barycentric coordinates respectively are: λ1 = 1 − x1 − x2, λ2 = x2 and
λ3 = x1. Consider a non-internal mesh element T (r) such that, without loss of generality,
v1 /∈ Γ. In such a case, depicted in figure 4, ε1 = 0 and ε2 = ε3 = 1, since v2, v3 ∈ Γ ∩ T (r).
This implies that λ∗ = λ2 + λ3 = x2 + x1 and,

ŷ =
1

λ∗ (λ2v̂2 + λ3v̂3) =
1

x2 + x1
(x2v̂2 + x1v̂3). (30)

In this case, σ̂ = {v̂1} and ŷ is defined on T̂ \ {v̂1}.

T̂

• •

•

v̂1 v̂2

v̂3

•

••
F

(r)
T

•
• ŷx̂

T (r)

•

•

•v2

v3

v1
•

• •

Γ

•
•

y
x

ê

e(r) = F
(r)
T (ê)

Figure 4: Displaying F
(r)
T : T̂ → T (r) in a 2D quadratic case (r=2).

By differentiating the expression (30) of ŷ and using an induction argument, it can be proven
that there exists a constant c > 0, independent of h, such that,

∥Dmŷ∥L∞(T̂\σ̂) ≤
c

(λ∗)m
, for all m ≥ 1. (31)

Since F
(r)
T is the Pr-Lagrangian interpolant of F

(e)
T on T̂ , then y = F

(r)
T ◦ ŷ is a smooth

function on T̂\σ̂. We now apply the inequality (29) for y = F
(r)
T ◦ ŷ to estimate its derivative’s
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norm as follows, for all m ≥ 1,

∥Dm(y)∥L∞(T̂\σ̂) ≤
m∑

p=1

(
∥Dp(F

(r)
T )∥L∞(ê)

∑
i∈E(m,p)

ci

m∏
q=1

∥Dq ŷ∥iq
L∞(T̂\σ̂)

)
,

where ê := (F
(r)
T )(−1)(e(r)) and e(r) := ∂T (r) ∩ Γ

(r)
h are displayed in Figure 4. Afterwards, we

decompose the sum into two parts, one part taking p = 1 and the second one for p ≥ 2, and
apply inequality (31),

∥Dm(y)∥L∞(T̂\σ̂)

≤ ∥D(F
(r)
T )∥L∞(ê)

∑
i∈E(m,1)

m∏
q=1

(
c

(λ∗)q
)iq+

m∑
p=2

(
∥Dp(F

(r)
T )∥L∞(ê)

∑
i∈E(m,p)

m∏
q=1

(
c

(λ∗)q
)iq

)
≤ chλ∗(−

∑m
q=1 qiq) + c

m∑
p=2

hrλ∗(−
∑m

q=1 qiq) ≤ ch(λ∗)−m,

using that ∥D(F
(r)
T )∥L∞(ê) ≤ ch and ∥Dp(F

(r)
T )∥L∞(ê) ≤ chr, for 2 ≤ p ≤ r + 1 (see [10,

page 239]), where the constant c > 0 is independent of h. This concludes the proof.

Proposition 7. Assume that Γ is Cr+2 regular. Then the mapping b◦y : x̂ ∈ T̂\σ̂ 7→ b(y(x̂)) ∈ Γ
is of class Cr+1. Additionally, for any 1 ≤ m ≤ r+ 1, there exists a constant c > 0 independent
of h such that,

∥Dm(b(y)− y)∥L∞(T̂\σ̂) ≤
chr+1

(λ∗)m
. (32)

Proof. Since Γ is Cr+2 regular, the orthogonal projection b is a Cr+1 function on a tubular
neighborhood of Γ (see [16, Lemma 4.1] or [4]). Consequently, following Proposition 6, b(y)− y
is of class Cr+1 on T̂\σ̂.

Secondly, consider 1 ≤ m ≤ r + 1. Applying the Faà di Bruno formula (29) for the function
b(y)− y = (b− id) ◦ y, we have,

∥Dm(b(y)− y)∥L∞(T̂\σ̂) ≤
m∑

p=1

(
∥Dp(b− id)∥L∞(e(r))

∑
i∈E(m,p)

ci

m∏
q=1

∥Dqy∥iq
L∞(T̂\σ̂)

)
, (33)

where e(r) = ∂T (r) ∩ Γ
(r)
h is displayed in Figure 4. Notice that b(v) = v for any Pr-Lagrangian

interpolation nodes v ∈ Γ ∩ e(r). Then id|
e(r)

is the Pr-Lagrangian interpolant of b|
e(r)

. Conse-
quently, the interpolation inequality can be applied as follows (see [19, 2]),

∀z ∈ e(r), ∥Dp(b(z)− z)∥ ≤ chr+1−p, for any 0 ≤ p ≤ r + 1.

This interpolation result combined with (28) is replaced in (33) to obtain,

∥Dm
x̂ (b(y)− y)∥L∞(T̂\σ̂) ≤ c

m∑
p=1

(
hr+1−p

∑
i∈E(m,p)

m∏
q=1

(
h

(λ∗)q
)iq

)

≤ c

m∑
p=1

(
hr+1−p h

∑m
q=1 iq

(λ∗)
∑m

q=1 qiq

)
≤ c

m∑
p=1

(
hr+1−p hp

(λ∗)m

)
≤ c

hr+1

(λ∗)m
,

where the constant c > 0 is independent of h. This concludes the proof.
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Now, we introduce the mapping ρT (r) , such that F
(e)

T (r) = F
(r)
T + ρT (r) transforms T̂ into the

exact triangle T (e).

Proposition 8. Let ρT (r) : x̂ ∈ T̂ 7→ ρT (r)(x̂) ∈ Rd, be given by,

ρT (r)(x̂) :=

{
0 if x̂ ∈ σ̂,

(λ∗)r+2(b(y)− y) if x̂ ∈ T̂\σ̂.

The mapping ρT (r) is of class Cr+1 on T̂ and there exist a constant c > 0 independent of h such
that,

∥DmρT (r)∥L∞(T̂ ) ≤ chr+1, for 0 ≤ m ≤ r + 1. (34)

Proof. The mapping ρT (r) is of class Cr+1(T̂\σ̂), being the product of equally regular functions.
Consider 0 ≤ m ≤ r + 1. Applying the Leibniz formula, we have,

DmρT (r) |T̂\σ̂
= Dm((λ∗)r+2(b(y)− y))

=

m∑
i=0

(m
i

)
(r + 2)....(r + 3− i)(λ∗)r+2−iDm−i(b(y)− y).

Then applying (32), we get, for x̂ ∈ T̂\σ̂,

∥DmρT (r)(x̂)∥ ≤ c

m∑
i=0

(λ∗)r+2−i chr+1

(λ∗)m−i
≤ chr+1(λ∗)r+2−m.

Since r + 2−m > 0, (λ∗)r+2−m −→
x̂→σ̂

0. Consequently, DmρT (r) can be continuously extended

by 0 on σ̂ when 0 ≤ m ≤ r + 1. Thus ρT (r) ∈ Cr+1 and the latter inequality ensures (34).

We can now prove Proposition 3, as mentioned before, its proof relies on the previous propo-
sitions.

Proof of Proposition 3. Let T (r) ∈ T (r)
h be a non-internal curved element. Let x = F

(r)
T (x̂) ∈

T (r) where x̂ ∈ T̂ . Following the equation (4), we recall that, F (e)

T (r)(x̂) = x+ ρT (r) (x̂). Then G
(r)
h

can be written as follows,

G
(r)
h |

T (r)
= F

(e)

T (r) ◦ (F
(r)
T )−1 = (F

(r)
T + ρT (r)) ◦ (F (r)

T )−1 = id|
T (r)

+ ρT (r) ◦ (F (r)
T )−1.

Firstly, with Proposition 8, ρT (r) is of class Cr+1(T̂ ) and F
(r)
T is a polynomial, then G

(r)
h is

also Cr+1(T (r)).

Secondly, F (r)
T is a C1-diffeomorphism and there exists a constant c > 0 independent of h

such that (see [10, page 239]),
∥D(F

(r)
T )−1∥ ≤ c

h
. (35)

Additionally, by applying (34) and (35), the following inequality holds,

∥D(ρT (r))∥L∞(T̂ )∥D((F
(r)
T )−1)∥L∞(T (r)) ≤ chr+1 c

h
= chr < 1. (36)

Then by applying [10, theorem 3], F (r)
T + ρT (r) is a C1-diffeomorphism, being the sum of a C1-

diffeomorphism and a C1 mapping, which satisfy (36). Therefore, G(r)
h = (F

(r)
T +ρT (r))◦(F (r)

T )−1

is a C1-diffeomorphism.
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To obtain the first inequality of (5), we differentiate the latter expression,

DG
(r)
h |

T (r)
− Id|

T (r)
= D(ρT (r) ◦ (F (r)

T )−1) = D(ρT (r)) ◦ ((F (r)
T )−1)D(F

(r)
T )−1.

Using (34) and (35), we obtain,

∥DG
(r)
h |

T (r)
− Id|

T (r)
∥L∞(T (r)) ≤ ∥D(ρT (r))∥L∞(T̂ )∥D((F

(r)
T )−1)∥L∞(T (r)) ≤ chr,

where the constant c > 0 is independent of h. Lastly, the second inequality of (5) comes as a
consequence of the first one, by definition of a Jacobian.
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